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ABSTRACT

Aims. Kink oscillations are frequently observed in coronal loops. This work aims to numerically clarify the influence of loop curvature
on horizontally and vertically polarized kink oscillations.
Methods. Working within the framework of ideal magnetohydrodynamics (MHD), we conduct three-dimensional (3D) simulations
of axial fundamental kink oscillations in curved density-enhanced loops embedded in a potential magnetic field. Both horizontal and
vertical polarizations are examined, and their oscillation frequencies are compared with WKB expectations. We discriminate two
di↵erent density specifications. In the first (dubbed “uniform-density”), the density is axially uniform and varies continuously in the
transverse direction toward a uniform ambient corona. Some further stratification is implemented in the second specification (dubbed
“stratified”), allowing us to address the e↵ect of evanescent barriers.
Results. Examining the oscillating profiles of the initially perturbed uniform-density loops, we found that the frequencies for both
polarizations deviate from the WKB expectation by ⇠ 10%. In the stratified loop, however, the frequency of the horizontal polarization
deviates to a larger extent (⇠ 25%). We illustrate the lateral leakage of kink modes through wave tunnelling in 3D simulations, for
the first time. Despite this, in both uniform-density and stratified loops, the damping time-to-period ratios are similar and close to the
analytical predictions for straight configurations under the thin-tube-thin-boundary (TTTB) assumption.
Conclusions. The WKB expectation for straight configurations can reasonably describe the eigenfrequency of kink oscillations only in
loops without an asymmetrical cross-loop density profile perpendicular to the oscillating direction. Lateral leakage via wave tunnelling
is found to be less e�cient than resonant absorption, meaning that the latter remains a robust damping mechanism for kink motions
even when loop curvature is included.
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1. Introduction

In recent years, more and more observations have revealed that
magnetic structures in the solar corona are dynamic and support
a rich variety of low-frequency waves in the magnetohydrody-
namic (MHD) regime (see e.g., Li et al. 2020; Wang et al. 2021;
Nakariakov et al. 2021; Banerjee et al. 2021, for recent reviews).
As energy carriers, these waves may be of potential importance
for tackling the coronal heating problem (see the reviews by e.g.,
De Moortel & Browning 2015; Arregui 2015; Van Doorsselaere
et al. 2020). Likewise, these waves themselves carry information
about their hosts, and thus have been considered useful for prob-
ing the physical conditions in the solar corona (e.g., Nakariakov
& Verwichte 2005; De Moortel & Nakariakov 2012; Nakariakov
& Kolotkov 2020). Furthermore, coronal waves are believed to
be related to the energy release processes in solar flares as well
(e.g., McLaughlin et al. 2018; Zimovets et al. 2021; Inglis et al.
2023).

Canonically accepted as the only motions that displace struc-
tural axes, kink modes have been frequently imaged in the so-
lar corona (see e.g., Nakariakov et al. 2021 for a recent review;
see also Nakariakov et al. 1999; Aschwanden et al. 1999 for
early dectections). They have been routinely employed in coro-
nal seismology, which combine wave theories and observations

to deduce those coronal parameters that are di�cult to directly
measure. For instance, the measured periods of kink motions
have been in routine use for inferring the coronal magnetic field
strength (e.g., Nakariakov & Ofman 2001; Yang et al. 2020).
Likewise, transverse inhomogeneity lengthscales can be seismo-
logically deduced with the measured damping times of decaying
kink motions, provided that this damping is attributable to such
mechanisms as resonant absorption (e.g., Goossens et al. 2002;
Aschwanden et al. 2003; Arregui & Asensio Ramos 2014; Ar-
regui et al. 2019). On this aspect, we note that resonant absorp-
tion is an ideal process that transfers kink energy into localized
Alfvénic motions (see the review by Goossens et al. 2011). This
process has been shown to be robust for a rich set of configura-
tions (e.g., Van Doorsselaere et al. 2004b; Terradas et al. 2008;
Pascoe et al. 2011; Howson et al. 2017; Guo et al. 2020; Shi et al.
2024b).

Solar coronal loops have been customarily modelled as
straight magnetic cylinders in theoretical studies on kink mo-
tions (e.g., Edwin & Roberts 1983; see also Zajtsev & Stepanov
1975; Wentzel 1979; Spruit 1982; Cally 1986). For instance,
resonantly damped kink motions have been extensively stud-
ied from the ideal quasi-mode perspective with the Frobenius
approach (e.g., Soler et al. 2013; Soler 2019; Geeraerts et al.
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2022) or more frequently dissipative eigenmode computations
(e.g., Poedts & Kerner 1991; Van Doorsselaere et al. 2004a; Ter-
radas et al. 2006a; Guo et al. 2016). In particular, concise ex-
pressions are available for the oscillation frequencies and damp-
ing rates of kink quasi-modes when the thin-tube-thin-boundary
(TTTB) approximation applies (e.g., Goossens et al. 1992, 2009;
Soler et al. 2013). From the initial value problem perspective, it
has been shown that the theoretical expectations for kink quasi-
modes tend to well describe the temporal evolution of kink mo-
tions (e.g., Ruderman & Roberts 2002), particularly when loop
boundaries are thin (Soler & Terradas 2015).

Closed loops, believed to be typical magnetic structures in
the corona (Reale 2014), serves as the main waveguide for kink
motions. A question then arises how does the loop curvature
influence the eigenfunctions of kink modes? Previous wave-
related investigations focused on two-dimensional (2D) loop
models (e.g., Smith et al. 1997; Brady & Arber 2005; Selwa
et al. 2005, 2006; Verwichte et al. 2006a,b,c). In particular, Ver-
wichte et al. (2006a,b,c) analyzed fast magnetoacoustic modes
and their seismological potential in detail in a curved slab model
under the plasma � = 0 limit. Lateral leakage of kink mo-
tions via wave tunnelling has been examined. However, these
two-dimensional studies are constrained to vertically polarized
kink modes only. While vertical polarizations have been reported
(e.g., Wang & Solanki 2004), a more comprehensive examina-
tion, including the more frequently observed horizontal polariza-
tion (e.g., Zhong et al. 2023), should also be taken into account.
This can only be achieved in three-dimensional (3D) examina-
tions. Initial analytical progress has been made by Van Doors-
selaere et al. (2004b, 2009) in a toroidal model embedded in a
radially dependent force-free field, showing that the curvature
of a loop has little influence on the kink eigenmodes in the ab-
sence of wave leakage. Beyond the consideration of a constant
loop cross-section, Ruderman (2009) found that the di↵erence
in eigenfrequencies of vertical and horizontal oscillations is pro-
portional to the tube expansion parameter under the thin tube
(TB) approximation. Numerically, the semi-torus model with a
constant loop cross-section considered by Terradas et al. (2006b)
distinguished horizontally and vertically polarized oscillations.
The frequency di↵erence between these two polarizations is not
observable. Meanwhile, lateral leakage that is naturally induced
in curved loops has also been included, and it is found to be
less e�cient than resonant absorption. The response of such a
semi-circular loop model to external perturbations was also nu-
merically examined by Pascoe & De Moortel (2014). In addi-
tion, kink oscillations in a force-free magnetic field with a dipole
configuration have been considered by e.g., McLaughlin & Of-
man (2008); Magyar & Nakariakov (2020). In particular, strong
damping of kink oscillations is illustrated by McLaughlin & Of-
man (2008), and it was attributed to the curvature of their loop
model. It seems that the e�ciency of lateral leakage and reso-
nant damping in curved loops still needs to be further clarified.
Regarding the frequency of kink modes in curved loops, Magyar
& Nakariakov (2020) found that the WKB approximation can
reasonably describe the kink period in their planar loop model
without considering a sigmoid geometry. However, the influence
of a potential field configuration on the di↵erent polarizations of
kink modes still remains unclear.

In the current work, we consider a curved loop model em-
bedded in a potential magnetic field and examine its response to
initial velocity perturbations from di↵erent directions. The influ-
ence of loop curvature on the eigenfrequency and damping rate
of the excited kink polarizations will be examined. Our study
di↵ers from available studies in the following aspects. Firstly,

both horizontal and vertical polarizations will be considered and
their frequencies will be compared with the WKB approxima-
tion. Secondly, lateral leakage will be investigated in 3D sim-
ulations, and the e�ciency of this damping mechanism will be
examined and compared with resonant absorption. This paper is
organized as follows. Section 2 describes the equilibrium con-
figuration and the numerical setup. The simulation results are
presented in Section 3, followed by a summary and discussion
of the present study in Section 4.

2. Numerical Model

We consider a potential magnetic field to mimic the magnetic
structures in the solar corona. A similar configuration has been
considered by e.g., Oliver et al. (1993); Selwa et al. (2005); Rial
et al. (2013). Let (x, y, z) be a Cartesian coordinate system. The
equilibrium magnetic field is given by

Bx(x, z) = B0 cos
 

x
⇤B

!
exp

 
� z
⇤B

!
, (1)

Bz(x, z) = �B0 sin
 

x
⇤B

!
exp

 
� z
⇤B

!
, (2)

where B0 = 20G, ⇤B = 2LB/⇡ with LB = 45Mm. This magnetic
field can be alternatively expressed via the vector potential

A =  ŷ = B0⇤B cos
 

x
⇤B

!
exp

 
� z
⇤B

!
ŷ, (3)

where  is the magnetic flux function whose contours delineate
magnetic lines of force. A set of right-handed orthonormal basis
vectors (êt, êh, êv) can be defined, where

êt = cos(x/⇤B)x̂ � sin(x/⇤B)ẑ,
êh = ŷ,
êv = sin(x/⇤B)x̂ + cos(x/⇤B)ẑ. (4)

Evidently, êt (êv) is locally parallel (perpendicular) to the mag-
netic field. As such, we further identify êh and êv as characteriz-
ing the horizontal and vertical polarizations, respectively.

Density-enhanced loops are constructed as follows. Con-
sider, for now, a uniform-density loop, by which we mean the
density is uniform along the magnetic field. The density distri-
bution is given by

⇢(r̄) = ⇢e + (⇢i � ⇢e) f (r̄), (5)

with

f (r̄) =
1
2

⇢
1 � tanh

✓ r̄
R
� 1

◆
b
��
, (6)

where

r̄ =

s 
 �  0

� 

!2

+

 
y
�y

!2

, (7)

with  0 =  (x = 30Mm, z = 0), � = B0⇤B, �y = 2⇤B.
Here ⇢i (⇢e) represents the internal (external) density, and R =
cos (30/⇤B) � cos (30.5/⇤B) prescribes the x-extent of the loop
at its footpoints. The parameter b determines the width of the
boundary layer. The 3D view of the loop can be seen in Fig-
ure 1a.

We proceed to specify the rest of the physical parameters.
The internal (external) density is ⇢i = 1.17 ⇥ 10�14g cm�3

(⇢e = 2.34 ⇥ 10�15g cm�3). The thickness of the boundary layer
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a b 

Fig. 1. Three-dimensional rendering of the density-enhanced loop. Several arbitrarily selected magnetic field lines are also shown and color-coded
by the local magnetic field strength. The left and right panels correspond to our “uniform-density” and “stratified” computations. See text for more
details.

is determined by b = 10, which gives the layer width l ⇡ 0.3a
with a being the half-width of the cross-section at the loop apex.
The temperature of the background corona is Te = 1MK. The
pressure is uniform in the entire computational domain, which is
set to be p = 2.3kB⇢eTe, with kB being the Boltzmann constant.

To distinguish between di↵erent polarizations of kink modes,
we employ two initial velocity perturbations. To excite the hori-
zontal polarization, we introduce an initial velocity perturbation
of the form

v(x, y, z; t = 0) = v0 sin ✓ f (r̄)êh, (8)

where v0 represents the amplitude of the velocity perturbation,
sin ✓ =

zp
x2 + z2

with ✓ being the angle along the loop from

the footpoint, f (r̄) is given by Equation (6). It ensures maximum
velocity perturbation at loop apex and zero velocity at loop foot-
points in the y-direction. Similarly, we introduce the other veloc-
ity perturbation to excite the vertical polarization, which reads

v(x, y, z; t = 0) = v0 sin ✓ f (r̄)êv. (9)

To limit the simulations to the linear regime, we set the velocity
amplitude to v0 = 5km/s. This choice ensures that the maximum
displacement of the loop is much less than the loop radius. The
velocity fields of the initial perturbations are shown in Figure 2a
and Figure 3a. Although these initial perturbations can not ex-
actly match the form of the eigenmodes, which are not straight-
forward to obtain beforehand in the current model, kink eigen-
modes are subsequently excited in our loop models as a response
to these initial velocity perturbations.

The boundary conditions are specified as follows. Reflective
boundary conditions are applied for the three components of ve-
locity at z = 0 to mimic the footpoints of the magnetic structures
anchored in the lower solar atmosphere. All other variables at
z = 0 are set to have zero-gradients. Asymmetric boundary con-
ditions are used for vx, By, and Bz to follow the oscillating prop-
erties of kink modes at x = 0. All other variables there are set to
be continuous. Zero-gradient boundary conditions are employed
at the other side boundaries and the top boundary.

We evolve the set of 3D, ideal MHD equations with the
finite-volume code MPI-AMRVAC (Xia et al. 2018; Keppens

et al. 2020). Gravity is neglected throughout. As described in
Xia et al. (2017), we split the magnetic field into B = B0 + B1,
taking B0 as the equilibrium one given by Equation (2) and actu-
ally solving for the time-dependent component (B1). An approx-
imate HLL Riemann solver and a third-order “cada3" slope lim-
iter (Čada & Torrilhon 2009) are employed for evaluating inter-
cell fluxes. We use the third-order TVD Runge-Kutta method for
time marching with a Courant number of 0.5. The computational
domain is chosen to be [0, 40] ⇥ [�10, 10] ⇥ [0, 40]Mm, which
incorporates only the x � 0 portion given the symmetric proper-
ties of our numerical implementation. Adaptive mesh refinement
(AMR) is employed to further reduce the computational cost. We
adopt a base grid of 40 ⇥ 60 ⇥ 120. Four levels of AMR are im-
plemented, leading to the highest resolution of 41.7km across
the loop region.

3. Results

3.1. General snapshots

We first examine the response of the uniform-density loop to
the initial perturbations by analyzing the distribution of veloc-
ity in the loop. Figure 2 and Figure 3 show the velocity field
at y = 0 and x = 0 (the loop apex) for horizontal and verti-
cal polarizations at di↵erent times. The density-enhanced loop is
outlined by dashed lines, and the magnetic lines of force are la-
belled by green lines. We start by noting that wave reflection
can be seen in Figure 3b due to the asymmetric boundary at
the bottom surface. However, the reflected fast waves quickly
leave the computational domain and do not influence the fol-
lowing analysis. From both Figure 2b and Figure 3b, we can
clearly observe the well-known dipole-like velocity fields that
are characteristic of kink motions (e.g., Goossens et al. 2014;
Guo et al. 2020) around the loop boundary. From the related an-
imations, we can observe damping kink oscillations in the loop
region for both polarizations. A signature of resonant absorption
is identified as an increase of localized Alfvénic motions around
the loop boundary. For the horizontal polarization, Alfvénic mo-
tions can be found around z = 20.5Mm and z = 19.5Mm at
the loop apex, namely the upper and lower boundaries of the
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t=34s
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Fig. 2. Velocity fields (arrows) for the horizontal polarization at (a) t = 0, (b) t = 34s, and (c) t = 661s. The left and right columns correspond to
the y = 0 and x = 0 cuts, respectively. Overplotted are the filled contours of vh = vy. The green curves in the left column represent the magnetic
lines of force, with the dashed lines further outlining the density-enhanced loop. These snapshots are taken from the attached animations, which
run from t = 0 to 1270s.

loop cross-section. Likewise, such Alfvénic motions can be ob-
served around y = �0.5Mm and y = 0.5Mm at the loop apex for
the vertically polarized mode. Resonant absorption is thus one
of the damping mechanisms in the current model. This mecha-
nism has been investigated in many previous works (e.g., Guo
et al. 2020). Here we demonstrate that resonant absorption is a
robust damping mechanism that manifests itself in curved loops
as well. In addition to resonant absorption, lateral leakage of the
wave modes can also be observed in the animations and Fig-
ure 2(c) and Figure 3(c) as selected snapshots. Oscillations due

to the wave leakage can be seen from the upper region outside
the loop for both polarizations. A detailed discussion of damping
mechanisms will be presented shortly.

3.2. Oscillating frequency

We examine the oscillation frequency in both polarizations. Fig-
ure 4 shows the evolution of velocity sampled at the loop apex
for both polarizations. We locate the local extrema in both oscil-
lation profiles, thereby evaluating the oscillation period as twice
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Fig. 3. Similar to Figure 2 except that the filled contours are for vv B v · êv. An animation is also attached, and runs from t = 0 to 1270s.

the average temporal spacing between two adjacent extrema.
Consequently, we obtain two di↵erent periods for the horizontal
polarization (Ph = 326.3s) and the vertical case (Pv = 401.8s).

We can compare the afore-derived periods with analytical
predictions. For straight cylinders that are structured only in the
radial direction, a simple expression is available for the oscilla-
tion frequency of kink modes in the TTTB limit (e.g., Goossens
et al. 1992, 2002), writing

!k =

s
⇢i!2

Ai + ⇢e!2
Ae

⇢i + ⇢e
, (10)

where !Ai (!Ae) represents the internal (external) Alfvén fre-
quency. Equation (10) becomes even simpler when thermal pres-
sure is negligible, reading

!k = !Ai

s
2⇢ie

⇢ie + 1
, (11)

where ⇢ie is the ratio of the internal to the external density. Equa-
tion (11) serves as a reasonable starting point for our further
analysis, given the small value of the plasma � in our equilib-
rium setup (� . 0.07 in the loop region). The internal Alfvén
frequency changes with height, we thus consider a WKB approx-
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Fig. 4. The oscillation profiles of the horizontally (black) and vertically
(blue) polarized modes. The velocity is sampled at x = 0, y = 0, z =
19.85Mm. Solid circles represent the extrema of each curve.

31

Fig. 5. Alfvén frequency variation along the z-direction at x = 0, y = 0.
The cross maker represents the predicted eigenfrequency of the kink
mode in the curved loop, which is calculated from Equation (12).

imation to estimate the eigenfrequency

Pk = 2

s
⇢ie + 1
⇢ie

Z L

0

ds
vAi(s)

, (12)

with

vAi(s) =
B(s)p
µ0⇢i
, (13)

where L represents the loop length, s is the distance from a foot-
point along the loop axis, and B(s) is the magnetic field strength
along s. Regardless of the damping first, we can roughly estimate
the eigenperiod of the current loop by considering Equation (12).
The period can thus be readily obtained as Pk = 369s. One can
find that the horizontal period Ph has a deviation of about 11.6%,
compared with Pk, while the vertically polarized mode has a de-
viation of about 8.9%. It should be noted that these deviations are
acceptable, given the assumptions considered in deriving Equa-
tion (11). Detailed discussions regarding the period discrepancy
can be found in Section 3.4. Here we show that the frequency
given by WKB theory is a good approximation to estimate the
eigenfrequency of di↵erent kink polarizations in a curved loop.
Such a small frequency deviation from the WKB approximation
in the curved loop model can be regarded as a positive result for
coronal seismology since it gives an acceptable error of around
10% in, e.g., probing the coronal magnetic field based on Equa-
tion (12).

3.3. Resonant damping and lateral leakage

Resonant absorption can be observed in the current oscillating
loop. It is well-known that the oscillation amplitude decreases
due to the resonant energy transfer from the collective kink
modes to the local Alfvén waves (e.g., Guo et al. 2020). In Fig-
ure 4, we can indeed observe the damping of oscillations in the
loop region. Meanwhile, wave leakage can also be captured, as
shown in the bottom panels of Figure 2 and Figure 3. Thus a
comparison between the damping e�ciency of resonant absorp-
tion and lateral leakage is necessary.

Before proceeding, we first revisit the physics of lateral leak-
age in a curved loop. As discussed in Verwichte et al. (2006a),
under a slab model, the oscillation property depends on the slope
of the Alfvén frequency profile. The local Alfvén frequency
can change with height, due to the variation of magnetic field
strength or vertical stratification of density. Let us consider the
upward leakage. Once the local Alfvén frequency decreases with
height and becomes smaller than the wave frequency at a certain
region above an oscillating loop, the wave energy leaks out from
the loop region through tunnelling the evanescent barrier, leading
to an oscillatory solution at a larger distance above the oscillat-
ing loop. In our current model, the local Alfvén frequency along
the z-direction is of the form

!A(z) = k(z)vAi(z) =
⇡

L(z)
B(z)

p
µ0⇢(z)

, (14)

where the local wavenumber k(z) changes due to the variation
of field line length L(z). Here, B(z) = B0 exp (�z/⇤B) represents
the magnetic field strength at a given height z. Given that the
magnetic field strength also drops with z, so d!A/dz < 0. There-
fore, we should expect an evanescent barrier and the wave tun-
nelling e↵ect. Figure 5 shows the variation of Alfvén frequency
!A along the z-direction at the loop apex. The green dashed line
labels the predicted oscillating frequency of the loop according
to Equation (12). Indeed, it reveals an evanescent barrier around
21Mm . z . 26Mm and smaller Alfvén frequencies than the
eigenfrequency when z & 26Mm. The location of the evanes-
cent barrier in the numerical models may slightly di↵er from
this prediction, due to the deviation of the eigenfrequencies of
kink polarizations from the analytical value.

The oscillatory patterns shown in the upper loop region are
now understandable with the aid of Figure 5. For clear illustra-
tion, we also consider a time-height map of velocity at y = 0
of the loop apex, as shown in Figure 6. Oblique stripes above
z ⇠ 23Mm can be observed in both polarizations. In Figure 5, the
Alfvén frequency decreases and becomes smaller than the pre-
dicted eigenfrequency when z & 26Mm (it should be z & 23Mm
in the horizontal case due to the eigenfrequency deviation), lead-
ing to a larger period with height in the upper loop region.
Therefore, we could see the oblique stripes become less verti-
cal with time. Similar cross-field wave propagation can also be
observed in e.g., Kaneko et al. (2015); Raes et al. (2017) due
to phase mixing. For the horizontal polarization, the evanescent
barrier where the oscillations should be evanescent is mixed with
the velocity signals of resonant Alfvén waves. Nonetheless, we
can still observe a non-velocity region around z ⇠ 23Mm after
about t = 500s. In the case of vertical polarization, however, the
evanescent patterns are not visible until t & 900s. The evanes-
cent barrier is probably covered by the extension of the external
velocity field, say, the wing of kink oscillations in the z-direction.

To quantitatively examine the e↵ect of lateral leakage in the
current model, a straightforward idea is to isolate the resonant
absorption by considering a non-leakage model. In line of this, a
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a b 

a b Fig. 6. The time-distance map of velocity for (a) horizontal and (b) vertical polarization. The evolution of vy and vz over time is sampled at x = 0,
y = 0 along the z-direction.

vertically stratified density distribution is considered. The Equa-
tion (5) is then replaced by

⇢0(r̄) = ⇢0e + (⇢0i � ⇢0e) f (r̄), (15)

where

⇢0i = 2⇢i exp
"
� (z/L0)µ

⇤B/L0

#
, ⇢0e = 2⇢e exp

"
� (z/L0)µ

⇤B/L0

#
(16)

with L0 = 10Mm being the unit of length, and the index µ = 1.8.
The density structure of this stratified loop is shown in Fig-
ure 1b. For a more reasonable comparison, this stratified model
ensures the same eigenfrequency as the uniform density model.
The eigenperiod can be estimated using the WKB approxima-
tion given by Equation (12), but with the internal Alfvén speed
defined by

vAi(s) =
B(s)

p
µ0⇢(s)

, (17)

where ⇢(s) is the density variation along s. In this model, the
local Alfvén frequency along the z-direction is illustrated in Fig-
ure 7. We can see the Alfvén frequency outside the loop is always
larger than the eigenfrequency (dashed line), resulting in the ab-
sence of the evanescent barrier in this model. In an intuitive man-
ner, we can compare the time-distance map of velocity for both
polarizations with Figure 6, as shown in Figure 8. Not surpris-
ingly, the patterns in the upper external loop region in Figure 6
disappear in Figure 8 for both polarizations, indicating that no
wave leakage occurs in this stratified loop. We can thus attribute
any damping in this model to resonant absorption.

Note that we only examine the local Alfvén frequency pro-
file at the loop apex (x = 0). In Equation (17), we find the
term B(s)/

p
⇢(s) monotonically decreases with height lower

than the loop apex. This implies that the Alfvén frequency at
other heights in the loop region is always larger than the eigen-
frequency shown in Figure 7. Thus the evanescent barrier is in-
deed absent in the entire loop region.

Figure 9 displays the fitting results for oscillating profiles in
all models. Using the similar procedure described in Section 3.2,
we obtain a period of P0h = 274.8s for the horizontal polar-
ization in the stratified loop. This period shows a deviation of
about 25.8%, compared with the predicted eigenfrequency Pk.
This discrepancy will be discussed in detail in section 3.4. An

32

Fig. 7. Similar to Figure 5, but for the density stratified loop. The cross
marker represents the predicted eigenfrequency of the kink mode ac-
cording to Equation (12).

exponential function of the form A exp (�t/⌧) is employed for
the fit, represented by black (leakage model) and green (non-
leakage model) dashed lines in Figure 9. The fitting procedure
yields a damping-time-to-period ratio ⌧h/Ph = 1.5 (⌧v/Pv = 1.5)
for the oscillating loop with lateral leakage and ⌧0h/P

0
h = 1.5

(⌧0v/P0v = 1.5) for the loop without wave leakage. For compar-
ison, we use the expression for the damping time due to reso-
nant absorption under the thin-tube-thin-boundary (TTTB) ap-
proximation. For a transversely linear density distribution (e.g.,
Goossens et al. 2009; Soler et al. 2013), it gives,

⌧ =
2d
⇡2l

⇢ie + 1
⇢ie � 1

Pk, (18)

where d represents the width of the loop. If we consider the loop
width varying from d = a at the footpoint to d = 2a at the loop
apex, we can readily estimate the damping-time-to-period ratio
to be ⌧/Pk = 1.01 � 2.03. This implies that our fitted damping
time is very close to the analytically derived value for the damp-
ing time due to resonant absorption. Note that this is a rough es-
timation, as the damping rate may vary with di↵erent transverse
density profiles, as discussed in many previous studies (e.g., Ru-
derman & Roberts 2002; Goossens et al. 2009). Nonetheless, the
same damping-time-to-period ratio in both uniform-density and
stratified loop models indicates that the damping e↵ect due to
lateral leakage is not significant. This probably means that the
damping time of lateral leakage is much longer than that of reso-
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23

a b 

a b 

Fig. 8. Similar to Figure 6, but for the density stratified loop.

31

a 

b 

Fig. 9. The oscillating profiles of the (a) horizontally and (b) vertically
polarized modes in all models. The velocity is sampled at loop apex (x =
0, y = 0, z = 19.85Mm). Oscillations with and without wave leakage are
distinguished by di↵erent colours. Dashed lines represent fitting results
with Ah = 3km/s and Av = 4.5km/s in the exponential functions.

nant absorption. This quantitatively confirms that lateral leakage
is less e�cient as a damping mechanism in curved coronal loops,
compared with resonant absorption.

In addition, the same damping-time-to-period ratio for both
polarizations indicates that the damping caused by resonant ab-
sorption does not have a preferred direction. Thus the significant
di↵erence in the number of observational events of horizontal
and vertical kink polarizations may just be due to the preference
of possible external exciters (coronal eruptions/ejections as sug-
gested by Zimovets & Nakariakov 2015). In other words, the
exciters of kink modes primarily interact with loops in horizon-
tal directions, rather than vertical directions. Additionally, the
same damping-time-to-period ratio in the stratified model indi-
cates that the rare occurrence of vertical polarizations should not
be attributed to the density stratification.

Note that our current analysis only considers the exponen-
tial damping stage. Previous studies (e.g., Pascoe et al. 2012;
Hood et al. 2013; Pascoe et al. 2016; Magyar & Van Doors-
selaere 2016; Guo et al. 2020) have confirmed that the damp-
ing profile of kink modes consists of two stages: the Gaussian
stage and the subsequent exponential stage. We can see that the
first period of the oscillation profiles in Figure 9 can not be per-
fectly described by exponential functions, probably suggesting a
Gaussian damping stage, which is known to robustly manifest in
non-axisymmetric loops (Guo et al. 2020). In the current analy-
sis, however, we only focus on the exponential damping profile
for a more direct comparison with the thin-tube-thin-boundary
(TTTB) expression, as discussed in Guo et al. (2020)

Now we further compare the e�ciency of resonant absorp-
tion and lateral leakage from the energetics perspective. As
shown above, we would expect a scenario in which the damping
time of lateral leakage is much longer than that of resonant ab-
sorption. In practice, these time scales can be obtained by com-
paring the energy and energy flux densities in the computational
domain. As discussed in e.g., Guo et al. (2020), we can define
wave-related energy and energy flux densities for linear pertur-
bations

E =
Z

V

0
BBBB@

1
2
⇢0v2

1 +
B2

1

2µ0
+

p2
1

2�p0

1
CCCCA dV, (19)

F =
I

S

"
p1v1 +

B1 ⇥ (v1 ⇥ B0)
µ0

#
· dS. (20)

Here the subscript "1" represents the linear perturbation to the
equilibrium. V represents the whole computational domain and
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a 

b 

Fig. 10. Energy and energy flux densities given by Equation (19) and
Equation (20) for (a) horizontal and (b) vertical polarizations. Here the
subscript "h" ("v") represents the horizontal (vertical) case. The energy
densities for both polarizations are depicted with black lines. Energy
flux densities are computed in two ways: by considering all boundaries
and by excluding the left symmetric boundary and bottom reflective
boundary. These two cases are distinguished by red and blue curves.

S is the surface of it. Note that the source term defined by Equa-
tion (B8) in Guo et al. (2020) is not relevant in the current po-
tential field given an initially constant pressure throughout. In
Figure 10, we illustrate the evolution of total energy and energy
flux densities in terms of the second-order small quantities given
by Equation (19) and Equation (20). For a straightforward com-
parison, we consider the amplitude of energy flux density vari-
ations, as shown by red and blue curves in Figure 10. Particu-
larly, the energy fluxes through open boundaries except the left
symmetric and the bottom reflective boundaries should induce
energy losses associated with lateral leakage. In Figure 10, the
acceptable small di↵erence between the red and blue curves re-
flects the e�ciency of the symmetric and reflective boundaries
in practice. We find for both polarizations, the total energy E
is much larger than the amplitude of the energy flux |F|, and the
time scale E/|F| is larger than 103s. This means that the damping
time associated with lateral leakage is about one order of mag-
nitude longer than that of resonant absorption. Therefore, lateral
leakage is less e�cient as a damping mechanism, compared with
resonant absorption.

Fig. 11. The evolution profiles of the magnetic force density (blue), the
pressure gradient force density (green), and the resultant force density
of these two (black). The corresponding forces are calculated by Equa-
tion (21) and Equation (22). Dashed red lines represent fitting results
with Fh = 2.0 ⇥ 10�11N/m3 and Fv = 2.3 ⇥ 10�11N/m3 in the exponen-
tial functions.

The decrease in total energy in Figure 10 is probably numer-
ical. We recomputed the energy E shown in Figure 10 by consid-
ering a lower AMR level (lower numerical resolution) and found
a faster decrease with time. This hints that a larger grid spacing
leads to an underestimation of the energy in the computational
domain, particularly in the nonuniform boundary layer as dis-
cussed in Shi et al. (2024a). Nonetheless, the statement that the
damping time of lateral leakage is much larger than that of reso-
nant absorption remains unchanged.

3.4. Frequency discrepancies

Now we attempt to understand period discrepancies shown up in
di↵erent models. Seen from Figure 4, we can find a frequency
discrepancy between the two polarizations. Likewise, the oscil-
lation periods for the uniform density model and the stratified
model are di↵erent as well, as shown in Figure 9a. These dif-
ferences can be understood intuitively. For instance, the internal
density decreases in the z-direction in the stratified loop, leading
to di↵erent dynamics across the loop in the êv direction. While
the uniform density loop has the same density distribution across
the loop in the same direction. Therefore, the period di↵erence
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Fig. 12. Similar to Figure 11, but for the density stratified model.
Dashed red lines represent fitting results with F0h = 2.0 ⇥ 10�11N/m3

and F0v = 1.6 ⇥ 10�11N/m3 in the exponential functions.

between the uniform density model and the stratified model is
reasonable since the density distributions perpendicular to the
oscillating direction are di↵erent. Following this line of thought,
we would expect no di↵erence between the two periods of ver-
tical polarization, given that the density has no variation in the
y-direction across the loop. This means that the vertically oscil-
lating loop can not "feel" any di↵erence in the environment from
the left to the right in the y-direction. Indeed, Figure 9b shows
that the period of the vertical polarization is P0v = 401.8s, which
is the same as the period of vertical polarization in the uniform
density loop model. This hints that the WKB approximation can
only reasonably describe the eigenfrequency of kink modes in
a loop without an asymmetric cross-loop density profile perpen-
dicular to the oscillation direction. The asymmetric cross-loop
density profile can result in di↵erent dynamics from one side of
the cross-section to the other, leading to a deviation of the eigen-
frequency from analytical predictions.

To further quantitatively understand the period discrepan-
cies, we consider the force analysis by employing the linearized
momentum equation,

⇢0
@v
@t
= Fp + FB, (21)

where

Fp = �rp1, FB =
(r ⇥ B1) ⇥ B0

µ0
+

(r ⇥ B0) ⇥ B1

µ0
. (22)

Here p1 represents the linear perturbation to the equilibrium
pressure, and ⇢0 = ⇢(r̄). We calculate the average force den-
sity in a large circular region (

p
y2 + (z � 19.85)2 < 5Mm) at the

apex (x = 0). Figure 11 and Figure 12 illustrate the profiles of
the pressure gradient force density Fp (blue), the magnetic force
density FB (green), and the sum of these two. We observe that
for all cases, especially for the leakage model (uniform density
loop), the resultant force is very close to the magnetic force un-
til the amplitude of the forces becomes too small to recognize.
This means that the magnetic force 1 is still the dominant restor-
ing force. This agrees with what we already know about kink
modes. Let us now focus on the resultant forces that are practi-
cally relevant in the current case. By fitting all the resultant force
profiles (black curves) in Figure 11 and Figure 12, we can obtain
the corresponding amplitudes. In the uniform density loop, the
amplitude of the resultant force for the horizontal polarization
is Fh = 2.0 ⇥ 10�11N/m3, while the corresponding amplitude
for the vertical polarization is Fv = 2.3 ⇥ 10�11N/m3. Consider-
ing the amplitudes of the velocity profiles are Ah = 3km/s and
Av = 4.5km/s, respectively, we can readily deduce the frequency
di↵erence !h/!v = 1.29, according to a Fourier decomposi-
tion in time of Equation (21). Therefore, the period di↵erence
between the horizontal and vertical polarizations seems under-
standable. Likewise, we obtain the corresponding amplitude of
the fitting for the horizontal polarization is F0h = 2.0⇥10�11N/m3

in the density stratified loop. But be aware that the average den-
sity at the loop apex surface decreases about 25%. Therefore, the
period deviation of about 25% can be observed for the horizon-
tal polarization in the stratified loops according to Equation (21).
In addition, the amplitude of the resultant force for the vertical
polarization is F0v = 1.6⇥10�11N/m3 for the stratified loop, thus
the periods show almost no di↵erence for both uniform density
and stratified models.

4. Discussion and Conclusions

We investigated the horizontally and vertically polarized kink
eigenmodes excited by initial velocity perturbations in curved
coronal loops embedded in a potential magnetic field. In the
case of a uniform-density loop, we found that the eigenfrequen-
cies of both polarizations deviate from the WKB approxima-
tion by about 10%. This implies that the WKB approximation
e↵ectively describes both horizontal and vertical polarizations
of the kink eigenmodes in this uniform-density loop. Lateral
leakage of both polarizations was clearly observed in the up-
per loop region as expected. For comparison, we also considered
a density-stratified loop without an evanescent barrier, resulting
in the absence of wave leakage. The damping-time-to-period ra-
tios of both polarizations in the density-stratified loop were sim-
ilar to those in the uniform-density loop, indicating that wave
leakage does not significantly influence the current damping of
both polarizations. All damping rates closely aligned with the
predictions of the thin-tube-thin-boundary (TTTB) approxima-
tion, indicating that resonant absorption is the dominant damp-
1 In fact, the magnetic tension component is dominant in our case,
given that the oscillation frequency is close to the local Alfvén fre-
quency. As shown by Equation (5) in Goossens et al. (2009), the mag-
netic pressure component can be neglected when the oscillation fre-
quency approaches the local Alfvén frequency.

Article number, page 10 of 12



Mingzhe Guo et al.: Kink oscillations in curved coronal loops

ing mechanism in the current curved loops. Examining the oscil-
lating frequency of both polarizations in the stratified loop, we
found that the eigenfrequency of the vertical polarization can be
described by the WKB approximation, while the frequency of
the horizontal polarization deviates from the WKB approxima-
tion by around 25%. This implies that the WKB approximation
is e↵ective only in describing kink modes in a loop without an
asymmetric cross-loop density variation in the direction perpen-
dicular to the polarization, the vertical polarization for instance.

The deviations from the WKB approximation in the frequen-
cies are reasonable. Magyar & Nakariakov (2020) have pointed
out that the WKB approximation can well describe the eigen-
frequency of horizontal kink oscillations when taking into ac-
count the expansion of the loop due to the chosen potential mag-
netic field and the density stratification. In our current model,
however, a deviation of about 11% was found in the horizon-
tal polarization, even if the changes in the loop cross-section are
included, as seen in Equation (11) and Equation (12). Such a
deviation may be caused by several reasons. One is that our cur-
rent loop is not long enough, thus leading to a deviation from the
long wavelength limit (kR ⌧ 1 with k being the axial wave num-
ber and R being the loop radius) considered in deriving Equation
(10). In addition, we assume a uniform magnetic field across the
loop (i.e., pressureless condition) when performing the WKB ap-
proximation. Yet the deviation is only around 10%. This suggests
that estimating parameters via seismology may not require mea-
suring the external magnetic field. However, it is worth noting
that the measurement of the internal Alfvén speed is still nec-
essary for seismology practices, as indicated in Equation (12).
Directly using Equation (11) based on the thin-tube (TB) theory
by assuming an average Alfvén frequency profile is still possible
to induce significant errors.

The frequency discrepancy between the two polarizations in
the uniform loop model seems to contradict previous analyti-
cal and numerical findings (Ruderman 2003; Guo et al. 2020).
In previous studies, a scenario has been discussed in which a
larger (smaller) axis in the loop cross-section results in a smaller
(larger) frequency of kink modes, given that more contribution
of the external (internal) Alfvén frequency is involved in the mi-
nor (major) axis. In the present model, the radius of the loop
cross-section in the horizontal direction is fixed, while the radius
of the loop cross-section in the vertical direction increases from
the bottom to the loop apex. However, the frequency of the hori-
zontal polarization is larger than that of the vertical polarization.
This contradiction is probably induced by the changing magnetic
field strength with height in the present model. In this case, the
Alfvén frequency (or Alfvén speed if we neglect the axial wave
number variation since the loop is thin) decreases from the lower
loop region to the upper loop region, which is the main di↵erence
from previous studies (e.g., Ruderman 2003; Guo et al. 2020). In
the current model, we would expect the variation in Alfvén speed
in the cross-section to influence the dynamics of the loop. At a
given height, the Alfvén speed changes along the minor axis of
the cross-section (i.e., the êv direction). For the vertical polar-
ization, such Alfvén speed variation in the oscillation direction
induces the contraction or extension of the cross-section in the
minor direction. In the horizontally polarized case, the variation
in Alfvén speed is perpendicular to the oscillation direction, thus
inducing an oblique minor axis. In addition, the variation in the
Alfvén speed along the loop also a↵ects the eigenfunctions of
kink modes. Therefore, the dynamics of the present loop are dif-
ferent from canonical elliptical loops. It is not straightforward
to compare directly with the scenario discussed in Ruderman
(2003) and Guo et al. (2020).

The density-stratified loop is artificially designed for com-
parison with the uniform-density loop. To isolate the e↵ect of
resonant absorption, the density-stratified loop is modified by
adjusting the scale height determined by the index µ, as defined
in Equation (16). This modification ensures the absence of an
evanescent barrier above the loop due to a larger Alfvén fre-
quency, compared with the uniform-density loop. Meanwhile,
the density-stratified loop maintains the same predicted eigen-
frequency as given by the WKB approximation. This makes the
comparison between the two types of oscillating loops more rea-
sonable. Even though lateral leakage is absent in the density-
stratified model, the damping-time-to-period ratio remains the
same as in the uniform density loop. This clearly shows that lat-
eral leakage is less e↵ective than resonant absorption.

A nonlinear regime has not been examined in the current
study. Given that both resonant absorption and lateral leakage
are linear processes, we thus consider a linear regime with small
amplitude perturbations to excite di↵erent polarizations, ensur-
ing amplitudes significantly smaller than the loop width. In this
manner, the damping of kink polarizations is not influenced by
nonlinearity discussed in e.g., Goddard & Nakariakov (2016);
Magyar & Van Doorsselaere (2016); Van Doorsselaere et al.
(2021), thereby making the comparisons with linear analytical
theories more straightforward.
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